
Best-first Utility-guided Search

Wheeler Ruml and Minh B. Do
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304 USA

ruml, minhdo atparc dotcom

Abstract

In many shortest-path problems of practical inter-
est, insufficient time is available to find a provably
optimal solution. One can only hope to achieve
a balance between search time and solution cost
that respects the user’s preferences, expressed as a
utility function over time and cost. Current state-
of-the-art approaches to this problem rely on any-
time algorithms such as Anytime A* or ARA*.
These algorithms require the use of extensive train-
ing data to compute a termination policy that re-
spects the user’s utility function. We propose a
more direct approach, called BUGSY, that incor-
porates the utility function directly into the search,
obviating the need for a separate termination pol-
icy. Experiments in several challenging problem
domains, including sequence alignment and tempo-
ral planning, demonstrate that this direct approach
can surpass anytime algorithms without requiring
expensive performance profiling.

1 Introduction
Important tasks as diverse as planning and sequence align-
ment can be represented as shortest-path problems. If suf-
ficient computation is available, optimal solutions to such
problems can be found using A* search with an admissible
heuristic[Hart et al., 1968]. However, in many practical sce-
narios, time is limited or costly and it is not desirable, or even
feasible, to look for the least-cost path. Search effort must
be carefully allocated in a way that balances the cost of the
paths found with the required computation time. This trade-
off is expressed by the user’s utility function, which specifies
the subjective value of every combination of solution quality
and search time. In this paper, we introduce a new shortest-
path algorithm called BUGSY that explicitly incorporates the
user’s utility function and uses it to guide its search.

A* is a best-first search in which the ‘open list’ of unex-
plored nodes is sorted byf(n) = g(n) + h(n), whereg(n)
denotes the cost experienced in reaching a noden from the
initial state andh(n) is typically a lower bound on the cost
of reaching a solution fromn. A* is optimal in the sense that
no algorithm that returns an optimal solution using the same
lower bound functionh(n) visits fewer nodes[Dechter and

Pearl, 1988]. However, in many applications solutions are
needed faster than A* can provide them. To find a solution
faster, it is common practice to increase the weight ofh(n)
via f(n) = g(n) + w · h(n), with w ≥ 1 [Pohl, 1970]. In the
recently proposed ARA* algorithm[Likhachevet al., 2004],
this scheme is extended to return a series of solutions of de-
creasing cost over time. The weightw is initially set to a high
value and then decremented byδ after each solution. If al-
lowed to continue,w eventually reaches1 and the cheapest
path is discovered. Of course, finding the optimal solution
this way takes longer than simply running A* directly.

These algorithms suffer from two inherent difficulties.
First, it is not well understood how to setw or δ to best satisfy
the user’s needs. Because it is linked to solution cost rather
than solving time, it is not clear how to achieve a desired
trade-off. Settingw too high orδ too low can result in many
poor-quality solutions being returned, wasting time. But if w
is set too low orδ too high, the algorithm may take a very
long time to find a solution. Therefore, to use a weighted A*
technique the user must perform many pilot experiments in
each new problem domain to find good parameter settings.

Second, for anytime algorithms such as ARA*, the user
must estimate the right time to stop the algorithm. The search
process appears as a black box that could emit a significantly
better solution at any moment, so one must repeatedly esti-
mate the probability that continuing the computation will be
worthwhile according to the user’s utility function. This re-
quires substantial prior statistical knowledge of the run-time
performance profile of the algorithm and rests on the assump-
tion that such learned knowledge applies to the current in-
stance.

These difficulties point to a more general problem: anytime
algorithms must inherently provide suboptimal performance
due to their ignorance of the user’s utility function. It is sim-
ply not possible in general for an algorithm to quickly trans-
form the best solution achievable from scratch in timet into
the best solution that would have been achievable given time
t + 1. In the worst case, visiting the next-most-promising so-
lution might require starting back at a child of the root node.
Without the ability to decide during the search whether a dis-
tant solution is worth the expected effort of reaching it, any-
time algorithms must be manually engineered according to
a policy fixed in advance. Such hardcoded policies mean
that there will inevitably be situations in which anytime al-



gorithms will either waste time finding nearby poor-quality
solutions or overexert themselves finding a very high quality
solution when any would have sufficed.

In this paper we address the fundamental issue: knowl-
edge of the user’s utility function. We propose a simple vari-
ant of best-first search that represents the user’s desires and
uses an estimate of this utility as guidance. We call the ap-
proach BUGSY (Best-first Utility-Guided Search—Yes!) and
show empirically across several domains that it can success-
fully adapt its behavior to suit the user, sometimes signifi-
cantly outperforming anytime algorithms. Furthermore, this
utility-based methodology is easy to apply, requiring no per-
formance profiling.

2 The BUGSY Approach

Ideally, a rational search agent would evaluate the utilityto
be gained by each possible node expansion. The utility of
an expansion depends on the utility of the eventual outcomes
enabled by that expansion, namely the solutions lying below
that node. For instance, if there is only one solution in a tree-
structured space, expanding any node other than the one it
lies beneath has no utility (or negative utility if time is costly).
We will approximate these true utilities by assuming that the
utility of an expansion is merely the utility of the highest-
utility solution lying below that node.

We will further assume that the user’s utility function can
be captured in a simple linear form. Iff(s) represents the
cost of solutions, and t(s) represents the time at which it
is returned to the user, then we expect the user to supply
three constants:Udefault, representing the utility of returning
an empty solution;wf , representing the importance of solu-
tion quality; andwt, representing the importance of compu-
tation time. The utility of expanding noden is then computed
as

U(n) = Udefault− min
s under n

(wf · f(s) + wt · t(s))

wheres ranges over the possible solutions available undern.
We follow the decision-theoretic tradition of better utilities
being more positive, requiring us to subtract the estimated
solution costf(s) and search timet(s). (In the discussion
below, this will mean that lower bounds onf(s) andt(s) will
yield an upper bound onU(n).) This formulation allows us
to express exclusive attention to either cost or time, or any
linear trade-off between them. The number of time units that
the user is willing to spend to achieve an improvement of one
cost unit iswf/wt. This quantity is usually easily elicited
from users if it is not already explicit in the application do-
main. (Of course, such a utility function would also be neces-
sary when constructing the termination policy for an anytime
algorithm.) Although superficially similar to weighted A*,
BUGSY’s node evaluation function differs becausewf is ap-
plied to bothg(n) andh(n).

Of course, the solutionss available under a node are un-
known, but we can estimate some of their utilities by using
functions analogous to the traditional heuristic functionh(n).
Instead of merely computing a lower bound on the cost of the
cheapest solution under a node, we also compute the lower

time

bound

nearest

cheapestupper

‘optimistic
lower bound’

utility

cost

Figure 1: Estimating utility using the maximum of bounds on
the nearest and cheapest solutions.

bound on distance in search nodes to that hypothetical cheap-
est solution. In many domains, this additional estimate en-
tails only trivial modifications to the usualh function. Search
distance can then be multiplied by an estimate of time per
expansion to arrive att(s). (Note that this simple estimation
method makes the standard assumption of constant time per
node expansion.) To provide a more informed estimate, we
can also compute bounds on the cost and time to the nearest
solution in addition to the cheapest. Again, standard heuristic
functions can often be easily modified to produce this infor-
mation. U(n) can then be estimated as the maximum of the
two utilities. For convenience, we will notate byf(n) and
t(n) the values inherited from whichever hypothesized solu-
tion had the higher utility.

Figure 1 illustrates this computation schematically. The
two solid dots represent the solutions hypothesized by the
cheapest and nearest heuristic functions. The dashed circles
represent other possible solutions, demonstrating a trade-off
between those two extremes. The dotted lines represent con-
tours of constant utility and the dotted arrow shows the di-
rection of the utility gradient. Assuming that the two solid
dots represent lower bounds, then an upper bound on utility
would combine the cost of the cheapest solution with the time
to the nearest solution. However, this is probably a significant
overestimate.1 Note that under different utility functions (dif-
ferent slopes for the dotted lines) the relative superiority of
the nearest and cheapest solutions can change.

2.1 Implementation
Figure 2 gives a pseudo-code sketch of a BUGSY implemen-
tation. The algorithm closely follows a standard best-first
search. U(n) is an estimate, not a true upper bound, so it
can underestimate or change arbitrarily along a path. This
implies that we might discover a better route to a previously
expanded state. Duplicate paths to the same search state are
detected in steps 7 and 10; only the cheaper path is retained.
We record links to a node’s children as well as the preferred
parent so that the utility of descendants can be recomputed

1It is interesting to note that taking the time of the cheapestand
the cost of the nearest is not a true lower bound on utility because the
two hypothesized solutions are themselves lower bounds andmight
in reality lie further toward the top and right of the figure. Hence it
is marked as an ‘optimistic lower bound’ in the figure.



BUGSY(initial, U())
1. open← {initial}, closed← {}
2. n← remove node fromopenwith highestU(n) value
3. if n is a goal, return it
4. addn to closed
5. for each ofn’s childrenc,
6. if c is not a goal andU(c) < 0, skipc
7. if an old version ofc is in closed,
8. if c is better thancold,
9. updatecold and its children
10. else, if an old version ofc is in open,
11. if c is better thancold,
12. updatecold
13. else, addc to open
14. go to step 2

Figure 2: BUGSY follows the outline of best-first search.

(step 9) ifg(n) changes[Nilsson, 1980, p. 66]. The on-line
estimation of time per expansion has been omitted for clarity.
The exact ordering function used foropen(and to determine
‘better’ in steps 8 and 11) prefers highU(n) values, break-
ing ties for low t(n), breaking ties for lowf(n), breaking
ties for highg(n). Note that the linear formulation of utility
means thatopenneed not be resorted as time passes because
all nodes lose utility at the same constant rate independent
of their estimated solution cost. In effect, utilities are stored
independent of the search time so far.

Theh(n) andt(n) functions used by BUGSY do not have
to be lower bounds. BUGSY requires estimates—there is no
admissibility requirement. If one has data from previous runs
on similar problems, this information can be used to convert
standard lower bounds into estimates[Russell and Wefald,
1991]. In the experiments reported below, we eschew the
assumption that training data is available and compute cor-
rections on-line. We keep a running average of the one-step
error in the cost-to-go and distance-to-go, measured at each
node generation. These errors are computed by comparing
the cost-to-go and distance-to-go of a node with those of its
children. If the cost-to-go has not decreased by the cost of the
operator used to generate the child, we can conclude that the
parent’s value was too low and record the discrepancy as an
error. Similarly, the distance-to-go should have decreased by
one. These correction factors are then used when computing
a node’s utility to give a more accurate estimate based on the
experience during the search so far. Given the raw cost-to-go
valueh and distance-to-go valued and average errorseh and
ed, d′ = d(1 + ed) andh′ = h + d′eh. To temper this inad-
missible estimate, especially when the utility function speci-
fies that solution cost is very important, we weight both error
estimates bymin(200, (wt/wf ))/1000. Because on-line es-
timation of the time per expansion and the cost and distance
corrections create additional overhead for BUGSY relative to
other search algorithms, we will take care to measure CPU
time when computing utility values in our experimental eval-
uation, not just node generations.

2.2 Properties of the Algorithm

BUGSY is trivially sound—it only returns nodes that are
goals. If the heuristic and distance functions are used without
inadmissible corrections, then the algorithm is also complete
if the search space is finite. Ifwt = 0 andwf > 0, BUGSY
reduces to A*, returning the cheapest solution. Ifwf = 0 and
wt > 0, then BUGSY is greedy ont(n). Ties will be broken
on low f(n), so a longer route to a previously visited state
will be discarded. This limits the size ofopento the size of
the search space, implying that a solution will eventually be
discovered. Similarly, if bothwf andwt > 0, BUGSY is com-
plete becauset(n) is static at every state. Thef(n) term in
U(n) will then cause a longer path to any previously visited
state to be discarded, bounding the search space and ensuring
completeness. Unfortunately, if the search space is infinite,
t(n) is inadmissible, andwt > 0, BUGSY is not complete be-
cause a pathologicalt(n) can potentially mislead the search
forever.

If the utility estimatesU(n) are perfect, BUGSY is optimal.
This follows because it will proceed directly to the highest-
utility solution. AssumingU(n) is perfect, when BUGSY ex-
pands the start node the child node on the path to the highest
utility solution will be put at the front of the open list. BUGSY
will expand this node next. One of the children of this node
must have the highest utility on the open list since it is one
step closer to the goal than its parent, which previously had
the highest utility, and it leads to a solution of the same qual-
ity. In this way, BUGSY proceeds directly to the highest util-
ity solution achievable from the start state. It incurs no loss in
utility due to wasted time since it only expands nodes on the
path to the optimal solution.

It seems intuitive that BUGSY might have application in
problems where operators have different costs and hence the
distance to a goal in the search space might not correspond
directly to its cost. But even in a search space in which all
operators have unit cost (and hence the nearest and cheapest
heuristics are the same), BUGSY can make different choices
than A*. Consider a situation in which, after several expan-
sions, it appears that node A, although closer to a goal than
node B, might result in a worse overall solution. (Such a sit-
uation can easily come about even with an admissible and
consistent heuristic function.) If time is weighted more heav-
ily than solution cost, BUGSY will expand node A in an at-
tempt to capitalize on previous search effort and reach a goal
quickly. A*, on the other hand, will always abandon that
search path and expand node B in a dogged attempt to op-
timize solution cost regardless of time.

In domains in which the cost-to-goal and distance-to-goal
functions are different, BUGSY can have a significant advan-
tage over weighted A*. With a very high weight, weighted
A* looks only at cost to go and will find a solution only as
quickly as the greedy algorithm. BUGSY however, because
its search is guided by an estimate of the distance to solutions
as well as their cost, can possibly find a solution in less time
than the greedy algorithm.



3 Empirical Evaluation
To determine whether such a simple mechanism for time-
aware search can be effective in practice, especially with
imperfect estimates of utility, we compared BUGSY against
seven other algorithms on three different domains: grid-
world path planning (12 different varieties), multiple se-
quence alignment (used by Zhou and Hansen[2002] to evalu-
ate Anytime A*), and temporal planning. All algorithms were
coded in Objective Caml, compiled to native code, and run on
one processor of a dual 2.6GHz Intel Xeon machine with 2Gb
RAM, measuring CPU time used. The algorithms were:

A* detecting duplicates using a closed list (hash table),
breaking ties onf in favor of highg,

weighted A* with w = 3,

greedy like A* but preferring lowh, breaking ties on lowg,

speedy like greedy but preferring low time to goal (t(n)),
breaking ties on lowh, then lowg,

Anytime A* weighted A* (w = 3) that continues, prun-
ing the open list, until an optimal goal has been found
[Hansenet al., 1997],

ARA* performs a series of weighted A* searches (starting
with w = 3), decrementing the weight (δ = 0.2, follow-
ing Likhachev et al.) and reusing search effort,

A∗

ε from among those nodes within a factor ofε (3) of the
lowest f value in the open list, expands the one esti-
mated to be closest to the goal[Pearl and Kim, 1982].

Note that greedy, speedy, and A* do not provide any inherent
mechanism for adjusting their built-in trade-off of solution
cost against search time; they are included only to provide a
frame of reference for the other algorithms. The first solu-
tion found by Anytime A* and ARA* is the same one found
by weighted A*, so those algorithms should do at least as
well. We confirmed this experimentally, and omit weighted
A* from our presentation below. A∗ε performed very poorly in
our preliminary tests, taking a very long time per node expan-
sion, so we omit its results as well. On domains with many
solutions, Anytime A* often reported thousands of solutions;
we therefore limited both anytime algorithms to only report-
ing solutions that improve solution quality by at least 0.1%.

3.1 Gridworld Planning
We considered several classes of simple path planning prob-
lems on a 2000 by 1200 grid, using either 4-way or 8-way
movement, three different probabilities of blocked cells,and
two different cost functions. The start state was in the lower
left corner and the goal state was in the lower right corner. In
addition to the standard unit cost function, under which every
move is equally expensive, we tested a graduated cost func-
tion in which moves along the upper row are free and the cost
goes up by one for each lower row. We call this cost function
‘life’ because it shares with everyday living the property that
a short direct solution that can be found quickly (shallow in
the search tree) is relatively expensive while a least-costsolu-
tion plan involves many annoying economizing steps. Under
both cost functions, simple analytical lower bounds (ignor-
ing obstacles) are available for the cost (g(n)) and distance

U() BUGSY ARA* AA* Sp Gr A*
unit costs, 8-way movement, 40% blocked

time only 100 100 100 100 100 59
500 microsec 100 99 99 99 99 59

1 msec 99 98 99 98 98 59
5 msec 99 91 93 90 90 59

10 msec 99 82 86 80 80 59
50 msec 97 25 54 19 19 65
0.1 sec 97 60 63 19 19 82

cost only 98 98 98 19 19 98
unit costs, 4-way movement, 20% blocked

time only 98 99 100 100 100 10
100 microsec 97 99 100 99 99 11
500 microsec 99 95 95 92 92 12

1 msec 97 90 85 78 78 12
5 msec 94 92 40 10 10 58

10 msec 91 86 36 8 8 79
50 msec 91 91 40 8 8 94
0.1 sec 93 93 44 7 7 95

cost only 96 96 96 7 7 96
‘life’ costs, 4-way movement, 20% blocked

time only 100 95 100 99 10
1 microsec 98 95 93 100 10
5 microsec 97 92 59 95 11

10 microsec 97 86 13 88 11
50 microsec 99 89 5 85 83

100 microsec 99 93 5 84 92
500 microsec 98 97 5 83 99

1 msec 97 98 5 82 99
5 msec 96 99 5 81 99

10 msec 98 99 5 81 99
50 msec 99 99 5 81 99

cost only 99 99 5 81 99

Table 1: Results on three varieties of gridworld planning.

(in search steps) to the cheapest goal and to the nearest goal.
These quantities are then used to compute thef(n) andt(n)
estimates. Due to the obstacles, the heuristics are not very
accurate and the problems can be quite challenging.

Table 1 shows typical results from three representative
classes of gridworld problems. Anytime A* is notated AA*.
Each row of the table corresponds to a different utility func-
tion, including those in which speedy and A* are each de-
signed to be optimal. Recall that each utility function spec-
ifies the relative weighting of solution cost and CPU time
taken to find it. The relative size of the weights determines
how important time is relative to cost. In other words, the
utility function specifies the maximum amount of time that
should be spent to gain an improvement of 1 cost unit. This
is the time that is listed under U() for each row in the table.
For example, ”1 msec” in a unit cost problem means that the
search algorithm can spend up to one millisecond in order
to find a solution one step shorter. In other words, it means
that a solution that takes 0.001 seconds longer to find than
another must be at least 1 unit cheaper to be judged superior.
The utility functions tested range over several orders of mag-
nitude, from one in which only search time matters to one in



which only solution cost matters.
Recall that, given a utility function at the start of its search,

BUGSY returns a single solution representing the best trade-
off between path cost and search time that it could find based
on the information available to it. We record the CPU time
taken along with the solution cost. Greedy (notated Gr in
the table), speedy (notated Sp), and A* also each return one
solution. These solutions may score well according to utility
functions with extreme emphasis on time or cost but may well
score poorly in general. The two anytime algorithms, Any-
time A* and ARA*, return a stream of solutions over time.
For these experiments, we allowed them to run to optimality
and then, for each utility function, post-processed the results
to find the optimal cut-off time to optimize each algorithm’s
performance for that utility function. Note that this ‘clair-
voyant termination policy’ gives Anytime A* and ARA* an
unrealistic advantage in our tests. To compare more easily
across different utility functions, all of the resulting solution
utilities were linearly scaled to fall between 0 and 100. Each
cell in the table is the mean across 20 instances.

In the top group (unit costs, 8-way movement, 40%
blocked), we see BUGSY performing very well, behaving like
speedy and greedy when time is important, like A* when
cost is important, and significantly surpassing all the algo-
rithms for the middle range of utility functions. In the next
two groups BUGSY performs very well as long as time has
some importance, again dominating in the middle range of
utility functions where balancing time and cost is crucial.
However, its inadmissible heuristic means that it ocassionally
performs very slightly worse than A* or ARA* when time
is of marginal importance and cost is critical. (Anytime A*
performed extremely poorly on the last group, taking many
hours per instance versus 6.2 seconds for A*, so its results are
omitted.) Given that BUGSY does not require performance
profiling to construct a termination policy, this is encourag-
ing performance. As one might expect, greedy performs well
when time is very important, however as cost becomes impor-
tant the greedy solution is less useful. Compared to greedy,
speedy offers little advantage.

3.2 Multiple Sequence Alignment
Alignment of multiple strings has recently been a popular do-
main for heuristic search algorithms[Hohwaldet al., 2003].
The state representation is the number of characters con-
sumed so far from each string; a goal is reached when all char-
acters are consumed. Moves that consume from only some of
the strings represent the insertion of a ‘gap’ character into
the others. We computed alignments of five sequences at a
time, using the standard ‘sum-of-pairs’ cost function in which
a gap costs 2, a substitution (mismatched non-gap characters)
costs 1, and costs are computed by summing all the pairwise
alignments. We tested on a set of five biological sequence
alignment problems used by Kobayashi and Imai[1998] and
[Zhou and Hansen, 2002]. Each problem consists of five rela-
tively dissimilar protein sequences. Each sequence is approx-
imately 150 symbols long, over an alphabet of 20 symbols
representing amino acids. The heuristic functionh(n) was
based on optimal pairwise alignments that were precomputed
by dynamic programming. The lower bound on search nodes

U() BUGSY ARA* AA* Sp Gr A*
time only 100 100 100 100 100 54

0.1 sec 99 97 98 96 96 54
0.5 sec 92 83 88 76 76 52

1 sec 80 68 79 55 54 51
5 sec 75 68 71 27 25 73

10 secs 78 75 74 26 25 78
cost only 82 82 82 26 24 82

Table 2: Results on protein sequence alignment.

to go was simply the maximum number of characters remain-
ing in any sequence.

Table 2 shows the results, with each row representing a
different utility function and all raw scores again normalized
between 0 and 100. Each cell represents the mean over the
5 instances (there was little variance in the scores in this do-
main). Again we see BUGSY performing well over a variety
of time/cost trade-offs, even holding its own against greedy
and A* at the two ends of the spectrum. The anytime algo-
rithms fail to match its performance, despite our clairvoyant
termination policy.

3.3 Temporal Planning
There has been increasing interest over the last ten years in
applying heuristic search algorithms to AI planning problems
[Zhou and Hansen, 2006]. In these problems, the search al-
gorithm must find a sequence of actions that connects the ini-
tial stateSI and goal stateSG. We tested our algorithms on
temporal planning problems where actions take real-valued
amounts of time (so-called ‘durative’ actions) and the objec-
tive function is to minimize the plan duration (makespan).
To find the plan, we used the temporal regression planning
framework in which the planner searches backwards from
the goal stateSG to reach the initial stateSI [Bonet and
Geffner, 2001]. To guide the search, we computeh(n) us-
ing the admissibleH2 heuristic of the TP4 planner[Haslum
and Geffner, 2001]. This heuristic estimates the shortest
makespan within which each single predicate or pair of pred-
icates can be reached from the initial stateSI . This is com-
puted once via dynamic programming before starting the
search, taking into account the pairwise mutual exclusion re-
lations between actions in the planning problem.

For BUGSY, we also computed the expected number of
steps to reach the shortest makespan solution, the expected
makespan to the closest solution, and the expected number of
steps to the closest solution. These three values are estimated
by first extracting two different relaxed plans[Hoffmann and
Nebel, 2001] that approximate the closest solution in terms
of steps and shortest solutions in terms of makespan from a
given search node. The makespan and number of regression
steps in those two plans are then used as the cost and time esti-
mates to the closest and cheapest solutions in BUGSY. While
both relaxed plans are extracted backward from the same re-
laxed planning graph starting from the same set of goals, the
heuristics to order the goals and the actions supporting them
are different. One favors actions that are close to the intial
stateSI (as indicated by theH2 heuristic) and the other fa-



vors actions that take fewer steps to reach the goal fromSI .
The second heuristic is based on another form of dynamic
programming that is similar toH2 but estimates the number
of search steps to reach each predicate and action fromSI

instead of the minimum makespan.
We tested the different search algorithms using 31 prob-

lems from five benchmark domains taken from the 1998 and
2002 International Planning Competitions:Blocksword, Lo-
gistics, ZenoTravel, Rovers, andSatellite. Blocksworldin-
volves building different block configurations using robot
arms. Logisticsand ZenoTravelinvolve moving people or
packages between different connected locations using air-
planes and/or trucks. InRovers, different rovers travel, collect
samples, take pictures, and communicate the data back to a
lander. InSatellite, several satellites carrying different sets of
equipment need to turn to different objects and take pictures
in different modes and communicate the data back to Earth.

Table 3 shows results from the largest problem in each of
the five domains. As before, each row represents a different
utility function. Due to the wide disparity in results for this
domain, we took the logarithm of the raw utilities before nor-
malizing them. Both Speedy and Greedy perform very badly
for temporal planning so we only show the comparisons be-
tween BUGSY, ARA*, Anytime A* and A*. All algorithms
returned the same results when cost was the only criterion.
BUGSY performs very well when time is important in all do-
mains, significantly outperforms all other algorithms. When
time becomes less important, either ARA* (Satellite, Logis-
tics, Rovers) or A* (ZenoTravel, Blocksworld) return solu-
tions with better utility in all domains. In the instances where
A* is the best (ZenoTravel and Blocksworld when cost is im-
portant), then BUGSY return solutions with similar utility to
ARA*. If one looks at the raw utility values, BUGSY is gener-
ally one or two orders of magnitude better on those problems
for which it outperforms the other search algorithms. And on
the others, the utility achieved by BUGSY is never more than
a factor of 3 worse than that achieved by the best algorithm,
making it much more robust than ARA* or Anytime A*.

4 Discussion
We have presented empirical results from a variety of search
problems, using utilities computed from actual CPU time
measurements, demonstrating that BUGSY is competitive
with state-of-the-art anytime algorithms without the needfor
a separate termination policy and its extensive training data.
For utility functions with an emphasis on solution time, it of-
ten performs significantly better than any previous method.
For utility functions based heavily on solution cost, it can
sometimes perform slightly worse than A* due to its inad-
missible heuristic. Overall, BUGSY appears remarkably ro-
bust across different domains and utility functions consider-
ing that it has no access to training data or any information
other than the user’s utility function.

Note that BUGSY solves a different problem than Real-
Time A* [Korf, 1990] and its variants. Rather than perform-
ing a time-limited search for the first step in a plan, BUGSY
tries to find a complete plan to a goal in limited time. This
is particularly useful in domains in which operators are not

invertible or are otherwise costly to undo. Having a com-
plete path to a goal ensures that execution does not become
ensnared in a deadend. It is also a common requirement in
applications where planning is but the first step in a series of
computations involving the action sequence.

In some applications of best-first search, memory use is a
prominent concern. In a time-bounded setting this is less fre-
quently a problem because the search doesn’t have time to ex-
haust available memory. However, the simplicity of BUGSY
means that it may well be possible to integrate some of the
techniques that have been developed to reduce the memory
consumption of best-first search if necessary.

We have done preliminary experiments incorporating sim-
ple deadlines into BUGSY, with encouraging results. Because
it estimates the search time-to-go, it can effectively prune so-
lutions that lie beyond a search time deadline. Another simi-
lar extension applies to temporal planning: one can specifya
bound on the sum of the search time and the resulting plan’s
execution time and let BUGSY determine how to allocate the
time.

5 Conclusions
As Nilsson notes, “in most practical problems we are inter-
ested in minimizing somecombinationof the cost of the path
and the cost of the search required to obtain the path” yet
“combination costs are never actually computed . . . because
it is difficult to decide on the way to combine path cost and
search-effort cost”[1971, p. 54, emphasis his]. BUGSY ad-
dresses this problem by letting the user specify how path cost
and search cost should be combined.

This new approach provides an alternative to anytime algo-
rithms. Instead of returning a stream of solutions and relying
on an external process to decide when additional search ef-
fort is no longer justified, the search process itself makes such
judgments based on the node evaluations available to it. Our
empirical results demonstrate that BUGSY provides a simple
and effective way to solve shortest-path problems when com-
putation time matters. We would suggest that search proce-
dures are usefully thought of not as black boxes to be con-
trolled by an external termination policy but as complete in-
telligent agents, informed of the user’s goals and acting ra-
tionally on the basis of the information they collect so as to
directly maximize the user’s utility.

Acknowledgments
Elisabeth Crawford assisted with this project during a sum-
mer internship at PARC. The members of PARC’s Embedded
Reasoning Area provided encouragement and many helpful
suggestions.

References
[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Plan-

ning as heuristic search.Artificial Intelligence, 129(1–
2):5–33, 2001.

[Dechter and Pearl, 1988] Rina Dechter and Judea Pearl.
The optimality of A*. In Laveen Kanal and Vipin Kumar,
editors,Search in Artificial Intelligence, pages 166–199.
Springer-Verlag, 1988.



[Hansenet al., 1997] Eric A. Hansen, Shlomo Zilberstein,
and Victor A. Danilchenko. Anytime heuristic search:
First results. CMPSCI 97-50, University of Massachusetts,
Amherst, September 1997.

[Hartet al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths.IEEE Transactions of Systems Sci-
ence and Cybernetics, SSC-4(2):100–107, July 1968.

[Haslum and Geffner, 2001] Patrik Haslum and Héctor
Geffner. Heuristic planning with time and resources. In
Proceedings of ECP-01, 2001.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search.Journal of Artificial Intelligence
Research, 14:253–302, 2001.

[Hohwaldet al., 2003] Heath Hohwald, Ignacio Thayer, and
Richard E. Korf. Comparing best-first search and dynamic
programming for optimal multiple sequence alignment. In
Proceedings of IJCAI-03, pages 1239–1245, 2003.

[Kobayashi and Imai, 1998] Hirotada Kobayashi and Hi-
roshi Imai. Improvement of the A* algorithm for multiple
sequence alignment. InProceedings of the 9th Workshop
on Genome Informatics, pages 120–130, 1998.

[Korf, 1990] Richard E. Korf. Real-time heuristic search.Ar-
tificial Intelligence, 42:189–211, 1990.

[Likhachevet al., 2004] Maxim Likhachev, Geoff Gordon,
and Sebastian Thrun. ARA*: Anytime A* with prov-
able bounds on sub-optimality. InProceedings of NIPS
16, 2004.

[Nilsson, 1971] Nils J. Nilsson.Problem-Solving Methods in
Artificial Intelligence. McGraw-Hill, 1971.

[Nilsson, 1980] Nils J. Nilsson.Principles of Artificial Intel-
ligence. Tioga Publishing Co, 1980.

[Pearl and Kim, 1982] Judea Pearl and Jin H. Kim. Studies
in semi-admissible heuristics.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-4(4):391–
399, July 1982.

[Pohl, 1970] Ira Pohl. Heuristic search viewed as path find-
ing in a graph.Artificial Intelligence, 1:193–204, 1970.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald.
Do the Right Thing: Studies in Limited Rationality. MIT
Press, 1991.

[Zhou and Hansen, 2002] Rong Zhou and Eric A. Hansen.
Multiple sequence alignment using Anytime A*. InPro-
ceedings of AAAI-02, pages 975–976, 2002.

[Zhou and Hansen, 2006] Rong Zhou and Eric Hansen.
Breadth-first heuristic search. Artificial Intelligence,
170(4–5):385–408, 2006.

U() Bugsy ARA* AA* A*
zenotravel-7

1 microsec 100 51 0 59
5 microsec 100 51 0 60

10 microsec 100 57 0 67
50 microsec 100 66 0 77

100 microsec 100 72 0 84
500 microsec 100 69 0 81

1 msec 100 71 0 83
5 msec 100 74 0 85

10 msec 100 84 0 96
50 msec 91 91 0 100
0.5 sec 97 97 0 100

5 sec 99 99 0 100
rovers-5

10 microsec 94 100 0 93
50 microsec 100 57 0 53

100 microsec 100 56 0 52
500 microsec 100 67 0 62

1 msec 100 72 0 66
5 msec 100 77 0 71

10 msec 92 100 0 93
50 msec 78 100 0 93
0.5 sec 79 100 0 94

5 sec 88 100 0 97
50 secs 97 100 0 99

blocksworld-10
5 msec 100 57 0 61

10 msec 100 56 0 61
50 msec 76 92 0 100
0.1 sec 100 90 0 98
0.5 sec 91 92 0 100

1 sec 83 93 0 100
5 sec 80 94 0 100

10 secs 100 88 0 93
satellite-4

5 microsec 100 61 0 57
10 microsec 100 61 0 57
50 microsec 100 66 0 61

100 microsec 100 88 0 82
500 microsec 80 100 0 93

1 msec 72 100 0 93
5 msec 63 100 0 94

50 msec 59 100 0 94
0.5 sec 77 100 0 96

5 sec 84 100 0 99
50 secs 94 100 0 100

logistics-5
100 microsec 100 96 0 91
500 microsec 100 66 0 62

1 msec 100 64 0 60
5 msec 100 77 0 72

10 msec 97 100 0 94
50 msec 73 100 0 94
0.5 sec 75 100 0 95

5 sec 85 100 0 98
50 secs 95 100 0 99

Table 3: Sample results on temporal planning.


