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Abstract

In many shortest-path problems of practical inter-
est, insufficient time is available to find a provably
optimal solution. One can only hope to achieve
a balance between search time and solution cost

that respects the user’s preferences, expressed as a

utility function over time and cost. Current state-
of-the-art approaches to this problem rely on any-
time algorithms such as Anytime A* or ARA*.
These algorithms require the use of extensive train-
ing data to compute a termination policy that re-
spects the user’s utility function. We propose a
more direct approach, calledugsy, that incor-
porates the utility function directly into the search,
obviating the need for a separate termination pol-
icy. Experiments in several challenging problem
domains, including sequence alignment and tempo-
ral planning, demonstrate that this direct approach
can surpass anytime algorithms without requiring
expensive performance profiling.

Introduction

Pearl, 1988 However, in many applications solutions are
needed faster than A* can provide them. To find a solution
faster, it is common practice to increase the weight @f)

via f(n) = g(n) +w - h(n), withw > 1 [Pohl, 1970. In the
recently proposed ARA* algorithifLikhachevet al., 2004,

this scheme is extended to return a series of solutions of de-
creasing cost over time. The weights initially set to a high
value and then decremented byfter each solution. If al-
lowed to continuew eventually reaches and the cheapest
path is discovered. Of course, finding the optimal solution
this way takes longer than simply running A* directly.

These algorithms suffer from two inherent difficulties.
First, it is not well understood how to setor ¢ to best satisfy
the user’s needs. Because it is linked to solution cost rathe
than solving time, it is not clear how to achieve a desired
trade-off. Settingv too high oré too low can result in many
poor-quality solutions being returned, wasting time. But i
is set too low oré too high, the algorithm may take a very
long time to find a solution. Therefore, to use a weighted A*
technique the user must perform many pilot experiments in
each new problem domain to find good parameter settings.

Second, for anytime algorithms such as ARA*, the user
must estimate the right time to stop the algorithm. The searc

Important tasks as diverse as planning and sequence aligRtocess appears as a black box that could emit a significantly
ment can be represented as shortest-path problems. If sutetter solution at any moment, so one must repeatedly esti-
ficient computation is available, optimal solutions to suchmate the probability that continuing the computation wél b
problems can be found using A* search with an admissiblevorthwhile according to the user’s utility function. Thie-r
heuristic[Hartet al., 1964. However, in many practical sce- quires substantial prior statistical knowledge of the tiume
narios, time is limited or costly and it is not desirable, eere ~ performance profile of the algorithm and rests on the assump-
feasible, to look for the least-cost path. Search efforttmustion that such learned knowledge applies to the current in-
be carefully allocated in a way that balances the cost of thétance.
paths found with the required computation time. This trade- These difficulties pointto a more general problem: anytime
off is expressed by the user’s utility function, which sfiesi  algorithms must inherently provide suboptimal performanc
the subjective value of every combination of solution dqyali due to their ignorance of the user’s utility function. It ims
and search time. In this paper, we introduce a new shortesply not possible in general for an algorithm to quickly trans
path algorithm called BGsY that explicitly incorporates the form the best solution achievable from scratch in titvieto
user’s utility function and uses it to guide its search. the best solution that would have been achievable given time
A* is a best-first search in which the ‘open list’ of unex- ¢ 4 1. In the worst case, visiting the next-most-promising so-
plored nodes is sorted bf(n) = g(n) + h(n), whereg(n) lution might require starting back at a child of the root node
denotes the cost experienced in reaching a noftem the  Without the ability to decide during the search whether a dis
initial state andh(n) is typically a lower bound on the cost tant solution is worth the expected effort of reaching ity-an
of reaching a solution from. A* is optimal in the sense that time algorithms must be manually engineered according to
no algorithm that returns an optimal solution using the same policy fixed in advance. Such hardcoded policies mean
lower bound functior(n) visits fewer nodegDechter and  that there will inevitably be situations in which anytime al



gorithms will either waste time finding nearby poor-quality Cojt

solut!ons or overexert themselves _f|nd|ng a very high qualit . nearest” o

solution when any would have sufficed. ) - optimistic
. . . lower bound

In this paper we address the fundamental issue: knowl-

edge of the user’s utility function. We propose a simple-vari

ant of best-first search that represents the user’s desitks a utility  ':_’~

uses an estimate of this utility as guidance. We call the ap- A

proach BJGsY (Best-first Utility-Guided Search—Yes!) and upper SR cheapest

show empirically across several domains that it can suecess +bound - e

fully adapt its behavior to suit the user, sometimes signifi-

cantly outperforming anytime algorithms. Furthermorés th

utility-based methodology is easy to apply, requiring no pe

formance profiling. Figure 1: Estimating utility using the maximum of bounds on

the nearest and cheapest solutions.

~ time

2 The BuGsy Approach

Ideally, a rational search agent would evaluate the utitity bound on distance in search nodes to that hypothetical eheap

. . . . st solution. In many domains, this additional estimate en-
be gamed_by each possible noq_e expansion. The utility of ils only trivial modifications to the usualfunction. Search
an expansion depends on the utility of the eventual 0utc0me§l

enabled by that expansion, namely the solutions lying belov%f;ggg?oﬁg ;?ﬁcet;sr;‘u&pg'édthbgt %?sessi&mpfgeegtfirggﬁ)r?er
that node. For instance, if there is only one solution in e-tre ethod makes the standard assumption of constant time per

structured space, expanding any node other than the One%de expansion.) To provide a more informed estimate, we

US: \?ﬁngglngng?eumgﬁéﬂ:ﬂfﬂ%ﬁngwﬁgmﬁ% th can e_llso_ compute bounds on the cost a_nd time to the nearest
utility of an expansion is merely the utility of the highest- SOIUt'.On in addition to the cheapes‘g._Agaln, standard I.SB.G”
utility solution lying below that node funqtlons can often be easily .modn‘led to produqe this infor-
. I . mation. U(n) can then be estimated as the maximum of the
We will further assume that the user’s utility function can two utilities.” For convenience, we will notate bi(n) and

be captured in a simple linear form. fi(s) represents the t(n) the values inherited from whichever hypothesized solu-
cost of solutions, andt(s) represents the time at which it .. : "

. ¢ d 1o th th £ th ¢ I'uon had the higher utility.

IS réturned 1o he user, then we expect the user 10 SUPPYY i, re 1 jllustrates this computation schematically. The
three constantst/uerau, representing the utility of returning .\, “sojig ‘dots represent the solutions hypothesized by the
?n emptlyts.olut:j(zlr;wf, repres?ntlrlgr;] the |mpt0rtancef of solu- cheapest and nearest heuristic functions. The dashed<ircl
tlca[_n qt:_a : y,_ﬁ? E_,I_trep;esen w:jg € wgs_orﬂ?nce 0 cort'n%u— represent other possible solutions, demonstrating a-wéde
ationtime. The ulility or€xpanding Nodels then computed  payyeen those two extremes. The dotted lines represent con-
as tours of constant utility and the dotted arrow shows the di-
wi - F(s) +w, - s rection of the utility gradient. Assuming that the two soll_d_

(wy - f(s) 0 4(s) dots represent lower bounds, then an upper bound on utility
would combine the cost of the cheapest solution with the time

U(n) = Udefaur— min
s under n

wheres ranges over the possible solutions available umder . - N
We follow the decision-theoretic tradition of better utds to the nearest solution. However, this is probably a sigaic

X - - . verestimaté. Note that under different utility functions (dif-
belng more positive, requiring us to subtract the es“.mate(?erent slopes for the dotted lines) the relative supesiasft
solution costf(s) and search time(s). (In the discussion

below, this will mean that lower bounds ¢ifs) andt(s) will the nearest and cheapest solutions can change.
yield an upper bound o/ (n).) This formulation allows us 5 1 Implementation

to express exclusive attention to either cost or time, or any_. ) :
linear trade-off between them. The number of time units thafl"gure 2 gives a pseudo-code sketch of@sy implemen-
the user is willing to spend to achieve an improvement of ond@tion. - The algorithm closely follows a standard bestfirst
cost unit isw; /w;. This quantity is usually easily elicited S€&rch-U(n) is an estimate, not a true upper bound, so it

from users if it is not already explicit in the application-do €&n underestimate or change arbitrarily along a path. This

main. (Of course, such a utility function would also be neces!MPli€s that we might discover a better route to a previously
sary when constructing the termination policy for an angtim €Xpanded state. Duplicate paths to the same search state are
algorithm.) Although superficially similar to weighted A*, detected in steps 7 and 10; only the cheaper path is retained.

BuGsY's node evaluation function differs becausg is ap- We record links to a node’s children as well as the preferred
plied to bothg(n) andh(n). parent so that the utility of descendants can be recomputed

Of course, the solutions available under a node are un- LIt is interesting to note that taking the time of the cheapest

known, but we can estimate some of their utilities by usinge cost of the nearest is not a true lower bound on utilitabee the
functions analogous to the traditional heuristic functign).  two hypothesized solutions are themselves lower boundsrgit

Instead of merely computing a lower bound on the cost of then reality lie further toward the top and right of the figureemte it
cheapest solution under a node, we also compute the lowésr marked as an ‘optimistic lower bound’ in the figure.



Buacsy(initial, U()) 2.2 Properties of the Algorithm
. open< {initial }, closed— {}
. n « remove node fronopenwith highestl (n) value
. if nis a goal, return it
. addn to closed

1

2

i BuGsy is trivially sound—it only returns nodes that are
5. for each ofn’s childrenc,

6

7

8

9

goals. If the heuristic and distance functions are usedowith
inadmissible corrections, then the algorithm is also catepl

if the search space is finite. 4, = 0 andw; > 0, BuGsYy
reduces to A*, returning the cheapest solutionu }f= 0 and

wy > 0, then BUGSY is greedy ort(n). Ties will be broken
on low f(n), so a longer route to a previously visited state
will be discarded. This limits the size opento the size of
the search space, implying that a solution will eventuadly b
discovered. Similarly, if botlw ; andw; > 0, BUGSY is com-
plete because(n) is static at every state. Th&n) term in

U (n) will then cause a longer path to any previously visited
state to be discarded, bounding the search space and ensurin
Figure 2: BiGsY follows the outline of best-first search.  completeness. Unfortunately, if the search space is igfinit
t(n) is inadmissible, and; > 0, BUGSY is not complete be-
cause a pathologica(n) can potentially mislead the search
forever.

if cis not a goal and/(c) < 0, skipc
if an old version otf: is in closed
if ¢ is better tharrg,

. update:gg and its children
10. else, if an old version afis in open
11. if ¢ is better tharzgg,

12. updatesgg
13. else, add to open
14. goto step 2

(step 9) ifg(n) changegNilsson, 1980, p. 66 The on-line
estimation of time per expansion has been omitted for glarit
The exact ordering function used fopen(and to determine
‘better’ in steps 8 and 11) prefers high(n) values, break-
ing ties for lowt(n), breaking ties for lowf(n), breaking
ties for highg(n). Note that the linear formulation of utility
means thabpenneed not be resorted as time passes becau
all nodes lose utility at the same constant rate independerg@
of their estimated solution cost. In effect, utilities atersd
independent of the search time so far.

If the utility estimated/ (n) are perfect, BGSY is optimal.
This follows because it will proceed directly to the highest
utility solution. Assuming/(n) is perfect, when BGSY ex-
pands the start node the child node on the path to the highest
utility solution will be put at the front of the open list.U&sY
g/&ill expand this node next. One of the children of this node
ust have the highest utility on the open list since it is one
ep closer to the goal than its parent, which previously had
the highest utility, and it leads to a solution of the samd-qua
ity. In this way, BUGSY proceeds directly to the highest util-

The h(n) andt(n) functions used by Bsy do not have ity solution achievable from the start state. Itincurs reslm
to be lower bounds. BGSY requires estimates—there is no utility due to wasted time since it only expands nodes on the
admissibility requirement. If one has data from previoussru Path to the optimal solution.
on similar problems, this_ informf_;ltion can be used to convert |1 seems intuitive that BGSY might have application in
standard lower bounds into estima®ussell and Wefald, hroplems where operators have different costs and hence the
1991. In the experiments reported below, we eschew th‘:gistance to a goal in the search space might not correspond
assumption that training data is available and compute COlgjrectly to its cost. But even in a search space in which all
rections on-line. We keep a running average of the one-stegyarators have unit cost (and hence the nearest and cheapest
error in the cost-to-go and distance-to-go, measured &t €ag,qristics are the same)UBSY can make different choices
node generation. These errors are computed by comparingan ax - Consider a situation in which, after several expan-
the cost-to-go and distance-to-go of a node with those of it§jgns it appears that node A, although closer to a goal than
children. If the cost-to-go has not decreased by the cosieof t o4e B, might result in a worse overall solution. (Such a sit-
operator used to generate the child, we can conclude that theyiion can easily come about even with an admissible and
parent's value was too low and record the discrepancy as gfynsistent heuristic function.) If time is weighted morae
error. Similarly, the distance-to-go should have decréése i\ than solution cost, Bsy will expand node A in an at-
one. These correction factors are then used when computhé/mpt to capitalize on previous search effort and reach & goa
a node’s utility to give a more accurate estimate based on th&uickly. A*, on the other hand, will always abandon that

experience dyring the search so far. Given the raw cosbto-ggagrch path and expand node B in a dogged attempt to op-
valueh and distance-to-go valutand average erroes, and  timize solution cost regardless of time.

edq, d = d(1+eq) andh’ = h + d’e;,. To temper this inad-

missible estimate, especially when the utility functioesp In domains in which the cost-to-goal and distance-to-goal
fies that solution cost is very important, we weight both erro functions are different, BGsy can have a significant advan-
estimates bynin(200, (w;/wy))/1000. Because on-line es- tage over weighted A*. With a very high weight, weighted
timation of the time per expansion and the cost and distancA* looks only at cost to go and will find a solution only as
corrections create additional overhead fard®sy relative to  quickly as the greedy algorithm. 8BSy however, because
other search algorithms, we will take care to measure CPlis search is guided by an estimate of the distance to sakitio
time when computing utility values in our experimental eval as well as their cost, can possibly find a solution in less time
uation, not just node generations. than the greedy algorithm.



3 Empirical Evaluation U() | Buesy ARA* AA* Sp Gr A
To determine whether such a simple mechanism for time- . unlltocgsts, 81'(‘3"(?3’ mf(\)/gmelrz)tb40°1moglo§lg<ed
aware search can be effective in practice, especially with 500 microsgc 100 99 99 99 99 59
imperfect estimates of utility, we compared/8sy against 1 msec 99 98 99 98 98 59
seven other algorithms on three different domains: grid-
world path planning (12 different varieties), multiple se- E(;msec gg g; 5932 28 28 53
guence alignment (used by Zhou and Hang897 to evalu- éo msec 97 o5 t4 19 19 25
ate Anytime A*), and temporal planning. All algorithms were 0 rlnsec 97 60 63 19 19 82
coded in Objective Caml, compiled to native code, and run on -+ Sec
one processor of a dual 2.6 GHz Intel Xeon machine with 2Gh cost only _98 98 98 19 019 98
RAM, measuring CPU time used. The algorithms were: ime onl umtg%osts, 4-5\;\éay Tg‘éemfgé’ Zolgéaloi:lged
A* detecting duplicates using a closed list (hash table), 1090 microsgc 97 99 100 99 99 11
breaking ties ory in favor of highg, 500 microsec 99 95 95 92 92 12
weighted A* with w = 3, 1 msec 97 90 85 78 78 12
greedy like A* but preferring lowh, breaking ties on lowy, 1(5) mz‘:}g gi‘ gé gg 1g 13 753
speedylikg grgedy but preferring low time to goat(()), 50 msec 91 91 40 8 8 94
breaking ties on low, then lowg, 0.1 sec 03 93 44 7 7 95
Anytime A* weighted A* (@ = 3) that continues, prun- cost only 96 9% 96 7 7 96
ing the open list, until an optimal goal has been found ‘life’ costs, 4-way movement, 20% blocked
[Hanseret al,, 1997, time only 100 95 100 99 10
ARA* performs a series of weighted A* searches (starting é m:g:g::g gg 325 593 1%% 1101
with w = 3), decrementing the weight & 0.2, follow- 10 microsec 97 86 13 88 11
ing Likhachev et al.) and reusing search effort, 50 Microsec 99 89 5 g5 83
AZ from among those nodes within a factor©f3) of the 100 microsec 99 93 5 84 92
lowest f value in the open list, expandg the one esti- 500 microsec 08 97 5 83 99
mated to be closest to the gd&earl and Kim, 198R 1 msec 97 98 5 82 99
Note that greedy, speedy, and A* do not provide any inherent 5 msec 96 99 5 8l 99
mechanism for adjusting their built-in trade-off of sobrti 10 msec 98 99 5 81 99
cost against search time; they are included only to providea 50 msec 99 99 5 8l 99
frame of reference for the other algorithms. The first solu- cost only 99 99 5 81 99

tion found by Anytime A* and ARA* is the same one found
by weighted A*, so those algorithms should do at least as Taple 1: Results on three varieties of gridworld planning.
well. We confirmed this experimentally, and omit weighted
A*from our presentation below. Aperformed very poorly in
our preliminary tests, taking a very long time per node expan(in search steps) to the cheapest goal and to the nearest goal
sion, so we omit its results as well. On domains with manyThese quantities are then used to computefihg andi(n)
solutions, Anytime A* often reported thousands of solusipn estimates. Due to the obstacles, the heuristics are not very
we therefore limited both anytime algorithms to only report accurate and the problems can be quite challenging.
ing solutions that improve solution quality by at least 0.1%  Table 1 shows typical results from three representative
. i classes of gridworld problems. Anytime A* is notated AA*.
3.1 Gridworld Planning Each row of the table corresponds to a different utility func
We considered several classes of simple path planning proltion, including those in which speedy and A* are each de-
lems on a 2000 by 1200 grid, using either 4-way or 8-waysigned to be optimal. Recall that each utility function spec
movement, three different probabilities of blocked cedlsgd  ifies the relative weighting of solution cost and CPU time
two different cost functions. The start state was in the lowe taken to find it. The relative size of the weights determines
left corner and the goal state was in the lower right cormrer. | how important time is relative to cost. In other words, the
addition to the standard unit cost function, under whichngve utility function specifies the maximum amount of time that
move is equally expensive, we tested a graduated cost funshould be spent to gain an improvement of 1 cost unit. This
tion in which moves along the upper row are free and the coss the time that is listed under U() for each row in the table.
goes up by one for each lower row. We call this cost functionFor example, "1 msec” in a unit cost problem means that the
‘life’ because it shares with everyday living the propettatt  search algorithm can spend up to one millisecond in order
a short direct solution that can be found quickly (shallow into find a solution one step shorter. In other words, it means
the search tree) is relatively expensive while a leastsmlst  that a solution that takes 0.001 seconds longer to find than
tion plan involves many annoying economizing steps. Undeanother must be at least 1 unit cheaper to be judged superior.
both cost functions, simple analytical lower bounds (ignor The utility functions tested range over several orders aj-ma
ing obstacles) are available for the cogfr()) and distance nitude, from one in which only search time matters to one in



which only solution cost matters. _ U() | Buesy ARA* AA* Sp Gr A*
Recall that, given a utility function at the start of its sggr ~ time only 100 100 100 100 100 54
BUGSY returns a single solution representing the best trade- 0.1 sec 99 97 98 96 96 54
off between path cost and search time that it could find based 0.5 sec 92 83 8 76 76 52
on the information available to it. We record the CPU time 1sec 80 68 79 55 54 51
taken along with the solution cost. Greedy (notated Gr in 5 sec 75 68 /127 25 73
the table), speedy (notated Sp), and A* also each return one 10 secs 78 7574 26 25 78
solution. These solutions may score well according totytili ~ cost only 82 82 82 26 24 82
functions with extreme emphasis on time or cost but may well
score poorly in general. The two anytime algorithms, Any- Table 2: Results on protein sequence alignment.

time A* and ARA*, return a stream of solutions over time.

For these experiments, we allowed them to run to optimality

and then, for each utility function, post-processed thaltes 0 go was simply the maximum number of characters remain-

to find the optimal cut-off time to optimize each algorithm’s INg IN any sequence.

performance for that utility function. Note that this ‘alai Table 2 shows the results, with each row representing a

voyant termination policy’ gives Anytime A* and ARA* an different utility function and all raw scores again norrzati

unrealistic advantage in our tests. To compare more easiljetween 0 and 100. Each cell represents the mean over the

across different utility functions, all of the resultinglsion 5 instances (there was little variance in the scores in this d

utilities were linearly scaled to fall between 0 and 100. EEac main). Again we see Bcsy performing well over a variety

cell in the table is the mean across 20 instances. of time/cost trade-offs, even holding its own against gyeed
In the top group (unit costs, 8-way movement, 40%and A* at the two ends of the spectrum. The anytime algo-

blocked), we see BGsy performing very well, behaving like ~ rithms fail to match its performance, despite our clairvya

speedy and greedy when time is important, like A* whentermination policy.

cost is important, and significantly surpassing all the algo .

rithms for the middle range of utility functions. In the next 3-3 Temporal Planning

two groups BIGsY performs very well as long as time has There has been increasing interest over the last ten years in
some importance, again dominating in the middle range o&pplying heuristic search algorithms to Al planning prohde
utility functions where balancing time and cost is crucial.[Zhou and Hansen, 20D6In these problems, the search al-
However, its inadmissible heuristic means that it ocasglgn  gorithm must find a sequence of actions that connects the ini-
performs very slightly worse than A* or ARA* when time tial stateS; and goal statéS. We tested our algorithms on

is of marginal importance and cost is critical. (Anytime A* temporal planning problems where actions take real-valued
performed extremely poorly on the last group, taking manyamounts of time (so-called ‘durative’ actions) and the obje
hours per instance versus 6.2 seconds for A%, so its resuits ative function is to minimize the plan duration (makespan).
omitted.) Given that BGsy does not require performance To find the plan, we used the temporal regression planning
profiling to construct a termination policy, this is encaga framework in which the planner searches backwards from
ing performance. As one might expect, greedy performs welthe goal stateS to reach the initial stateS; [Bonet and
when time is very important, however as cost becomes imporGeffner, 2001 To guide the search, we computén) us-

tant the greedy solution is less useful. Compared to greedyhg the admissibléd? heuristic of the TP4 plannéHaslum

speedy offers little advantage. and Geffner, 200l This heuristic estimates the shortest
. . makespan within which each single predicate or pair of pred-
3.2 Multiple Sequence Alignment icates can be reached from the initial stte This is com-

Alignment of multiple strings has recently been a popular do puted once via dynamic programming before starting the
main for heuristic search algorithriidohwaldet al, 2003.  search, taking into account the pairwise mutual excluséen r
The state representation is the number of characters cotations between actions in the planning problem.

sumed so far from each string; a goal is reached when all char- For BuGsy, we also computed the expected number of
acters are consumed. Moves that consume from only some sfeps to reach the shortest makespan solution, the expected
the strings represent the insertion of a ‘gap’ character int makespan to the closest solution, and the expected number of
the others. We computed alignments of five sequences atsieps to the closest solution. These three values are éstima
time, using the standard ‘sum-of-pairs’ cost functioniristth by first extracting two different relaxed plafidoffmann and

a gap costs 2, a substitution (mismatched non-gap chascteNebel, 2001 that approximate the closest solution in terms
costs 1, and costs are computed by summing all the pairwisef steps and shortest solutions in terms of makespan from a
alignments. We tested on a set of five biological sequencgiven search node. The makespan and number of regression
alignment problems used by Kobayashi and Ii£9g and  stepsin those two plans are then used as the cost and time esti
[Zhou and Hansen, 2002 ach problem consists of five rela- mates to the closest and cheapest solutionsia $. While

tively dissimilar protein sequences. Each sequence issappr both relaxed plans are extracted backward from the same re-
imately 150 symbols long, over an alphabet of 20 symboldaxed planning graph starting from the same set of goals, the
representing amino acids. The heuristic functidn) was  heuristics to order the goals and the actions supporting the
based on optimal pairwise alignments that were precomputegre different. One favors actions that are close to thelintia
by dynamic programming. The lower bound on search nodestateS; (as indicated by thé7? heuristic) and the other fa-



vors actions that take fewer steps to reach the goal ffpm invertible or are otherwise costly to undo. Having a com-
The second heuristic is based on another form of dynamiplete path to a goal ensures that execution does not become
programming that is similar té/2 but estimates the number ensnared in a deadend. It is also a common requirement in
of search steps to reach each predicate and action ffom applications where planning is but the first step in a series o
instead of the minimum makespan. computations involving the action sequence.

We tested the different search algorithms using 31 prob- In some applications of best-first search, memory use is a
lems from five benchmark domains taken from the 1998 angbrominent concern. In a time-bounded setting this is less fr
2002 International Planning CompetitionBlocksword Lo-  quently a problem because the search doesn’t have time to ex-
gistics ZenoTravel Rovers and Satellite Blocksworldin-  haust available memory. However, the simplicity af&sy
volves building different block configurations using robot means that it may well be possible to integrate some of the
arms. Logisticsand ZenoTravelinvolve moving people or techniques that have been developed to reduce the memory
packages between different connected locations using aiconsumption of best-first search if necessary.
planes and/or trucks. Roversdifferent rovers travel, collect We have done preliminary experiments incorporating sim-
samples, take pictures, and communicate the data back topde deadlines into BGsY, with encouraging results. Because
lander. InSatellite several satellites carrying different sets of it estimates the search time-to-go, it can effectively prso-
equipment need to turn to different objects and take pisturelutions that lie beyond a search time deadline. Another-simi
in different modes and communicate the data back to Earth.lar extension applies to temporal planning: one can specify

Table 3 shows results from the largest problem in each obound on the sum of the search time and the resulting plan’s
the five domains. As before, each row represents a differer@xecution time and let 8csy determine how to allocate the
utility function. Due to the wide disparity in results forigh  time.
domain, we took the logarithm of the raw utilities before-nor )
malizing them. Both Speedy and Greedy perform very badiyp ~ Conclusions

for temporal planning so we only show the comparisons beas Nilsson notes, “in most practical problems we are inter-
tween BJGSy, ARA*, Anytime A* and A*. All algorithms  ested in minimizing someombinatiorof the cost of the path
returned the same results when cost was the only criteriomnd the cost of the search required to obtain the path” yet
BuaGsy performs very well when time is important in all do- “combination costs are never actually computed . ..because
mains, significantly outperforms all other algorithms. Whe it js difficult to decide on the way to combine path cost and
time becomes less important, either ARA* (Satellite, Legis search-effort cost{1971, p. 54, emphasis hisBuGsy ad-

tics, Rovers) or A* (ZenoTravel, Blocksworld) return solu- dresses this problem by letting the user specify how path cos
tions with better utility in all domains. In the instancesem®  and search cost should be combined.

A*is the best (ZenoTravel and Blocksworld when costis im-  This new approach provides an alternative to anytime algo-
portant), then BGsy return solutions with similar utility to  rithms. Instead of returning a stream of solutions and nejyi
ARA*. If one looks at the raw utility values, BGsyis gener-  on an external process to decide when additional search ef-
ally one or two orders of magnitude better on those problemsort is no longer justified, the search process itself makeh s

for which it outperforms the other search algorithms. And onjudgments based on the node evaluations available to it. Our
the others, the utility achieved byusy is never more than  empirical results demonstrate thab@sY provides a simple
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problems, using utilities computed from actual CPU timedirectly maximize the user’s utility.
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U() | Bugsy ARA* AA* A*
zenotravel-7
1 microsec 100 51 0 59
5 microsec 100 51 0 60
10 microsec 100 57 0 67
50 microsec 100 66 0 77
100 microsec 100 72 0 84
500 microsec| 100 69 0 81
1 msec 100 71 0 83
5 msec 100 74 0 85
10 msec 100 84 0 96
50 msec 91 91 0 100
0.5 sec 97 97 0 100
5sec 99 99 0 100
rovers-5
10 microsec 94 100 0 93
50 microsec 100 57 0 53
100 microsec 100 56 0 52
500 microsec 100 67 0 62
1 msec 100 72 0 66
5 msec 100 77 0 71
10 msec 92 100 0 93
50 msec 78 100 0 93
0.5 sec 79 100 0 94
5sec 88 100 0 97
50 secs 97 100 0 99
blocksworld-10
5 msec 100 57 0 61
10 msec 100 56 0 61
50 msec 76 92 0 100
0.1sec 100 90 0 98
0.5 sec 91 92 0 100
1sec 83 93 0 100
5 sec 80 94 0 100
10 secs 100 88 0 93
satellite-4
5 microsec 100 61 0 57
10 microsec 100 61 0 57
50 microsec 100 66 0 61
100 microsec 100 88 0 82
500 microsec 80 100 0 93
1 msec 72 100 0 93
5 msec 63 100 0 94
50 msec 59 100 0 94
0.5 sec 77 100 0 96
5sec 84 100 0 99
50 secs 94 100 0 100
logistics-5
100 microsec 100 96 0 91
500 microsec| 100 66 0 62
1 msec 100 64 0 60
5 msec 100 77 0 72
10 msec 97 100 0 94
50 msec 73 100 0 94
0.5 sec 75 100 0 95
5sec 85 100 0 98
50 secs 95 100 0 99

Table 3: Sample results on temporal planning.



