
Monte Carlo Localization
Juan Alvarez, Joel Santiago-Baretti, Erica Chen, Mohammed Ehab, Ningshan Ma

RSS: Robotics, Science, and Systems
Team 2

April 8th 2024

Localization is a fundamental task in robotics where a robot needs to deter-
mine its pose relative to known map. It functions as an important subroutine
in higher-level tasks such as trajectory following and feedback control. In this
report, we will explore the Monte Carlo approach to localization and test it on
both a simulated and real race car. Keywords: Localization, Monte Carlo Al-
gorithms

1 Introduction

Localization is the process of a robot determining its
pose with respect to a known environment. This task is
crucial for plenty of downstream tasks. For example,
in order for a robot to follow a preplanned trajectory,
the robot needs to know its location with respect to that
trajectory.
It might seem like localization is an easy task to solve.
If the robot knows its initial pose on the map, then
since it knows the motion commands it’s receiving,
it can integrate these motion commands over time to
determine its pose at all times. However, the issue is
that the robot doesn’t exactly follow its steering com-
mands, and there could be a bit of noise in how it ends
up physically moving. That noise will accumulate over
time, deeming the pose estimate very inaccurate.
We will discuss a solution for this problem based on
a Monte Carlo method. On a high level, the idea is to
store a probability distribution over the robot’s poten-
tial poses and update it as it receives new information.
Namely, we will update the distribution based on two
kinds of information: motion commands and sensor
readings from the LIDAR scanner. We will show mod-
els for how both of these pieces of information update
the robot’s belief about its pose.

2 Technical Approach

2.1 Bayesian Filter and Monte Carlo Ap-
proach [Ehab]

The idea behind a Bayes filter is the following: instead
of a single pose for the robot, we will store a belief
about the pose as a probability distribution p(x, y, θ).

Every time the robot receives new information, either
in the form of a motion command or a sensor mea-
surement, the belief will be updated to a new belief
pnew(x, y, θ) according to Bayes’ rule.
To carry that idea on, we need a way to represent the
distribution p as well as the update rules for that rep-
resentation. The idea behind Monte Carlo Localiza-
tion (MCL) is to represent the distribution as a list of
samples from it, referred to in the rest of this report
as particles. We will then develop two models for the
two cases the robot receives new information: a motion
model that will show how the particles should get re-
sampled when the robot receives a motion command,
and a sensor model that shows how the particles should
get resampled when the robot receives a sensor mea-
surement from the LIDAR scan. The resampled par-
ticles should resemble samples from the distribution
pnew(x, y, θ).

2.2 Motion Model [Ehab]

In order to update the particles based on motion com-
mands sent to the robot, we need a model for how the
robot state changes as it executes these commands. Let
(x, y, θ) denote the pose of the robot, where (x, y) is
its position relative to the map, and θ is its orientation.
Furthermore, let v denote its commanded velocity and
η its commanded steering angle. If the robot follows
the commands exactly, the Ackermann model then pre-
dicts

ẋ = v cos(θ) (1a)

ẏ = v sin(θ) (1b)

θ̇ =
v

L
tan(η). (1c)

1



2 TECHNICAL APPROACH

However, the real car will not follow the commands
exactly and could deviate. The best theoretical solution
we came up with to model these deviations is to add
independent Gaussian noise to the velocity v and the
steering angle η. We think the Gaussian is a reasonable
distribution because it suggests that, on average, the
robot will follow the command we send and that the
deviations become exponentially more improbable as
they get bigger. We justify the independence assump-
tion by the fact that the wheels and the steering are
operated by different motors, and hence the deviations
from them should be independent.
Furthermore, while it was suggested to work with the
odometry (∆x,∆y,∆θ), working with v and η is more
convenient, since the odometry needs to be transformed
from the robot frame to the map frame forcing us to do
more computations.
In implementation, we found that the Odometry mes-
sage in ROS does not quite give us the steering angle
η, but rather the angular velocity θ̇. Due to that, we
decided to change the model slightly and directly add
noise to θ̇ instead of η.
The Odometry messages are given in discrete time, so
we have to discretize the motion model. Let ∆t denote
the difference between the consecutive time steps. We
update the particles according to the following rule:-

xnew = xold + (v + z1) cos(θold)∆t (2a)

ynew = yold + (v + z1) sin(θold)∆t (2b)

θnew = θold + θ̇∆t+ z2, (2c)

where z1 ∼ N (0, π
30), z2 ∼ N (0, 0.3). The covari-

ances were manually tuned to get better performance in
practice.

2.3 Sensor Model [Erica]

The sensor model defines how likely the robot is to
record a given sensor reading based on the hypothe-
sized position of the particle. We utilized raycasting
to get the sensor readings of a hypothesized particle
and compared this to the ground truth LIDAR reading.
Then for each ray of the raycasted scan, we can break
it down into four cases. These sub-probabilities are
phit, the probability of hitting a known object; pshort,
the probability of unknown obstacles; pmax, the prob-
ability of a large or missed measurement; and prand
represents a the probability of a random measurement.
We multiple and add the sub-probabilities with weights
to get probability for the ray. We then take all of these
ray probabilities and multiply it together to get the total
probability for the scan.
To be computationally faster, we created a discretized
table that calculates probability values based on our

columns d, the ground truth distance, and are rows z(i)k ,
the range measurement for the scan of a particle.
For phit, we utilize a Gaussian distribution formula
with

phit = e
−(z−d)2

2∗σhit2 , σhit = 8.0 (3)

We then normalized it by dividing it by the sum of the
entire column.
Similarly, we have pshort, which is a linear relationship
represented as

pshort =
2

d
· (1−

z
(i)
k

d
) (4)

that we then discretize.
For pmax, since we only are concerned with a very
large or missed measurement, we are able to represent
this by only assigning weight to the last column.

pmax =

{
1 if z(i)k = zmax

0 otherwise
(5)

Finally, for prand, we have

prand =
1

zmax
(6)

since we assign an equal probability of randomness
that adds up to 1.
We assigned these probabilities the weights αhit =
0.74, αshort = 0.07, αmax = 0.07, αrand = 0.12. The
total probability of the scan for a hypothesized particle
was then summed and visualized in Fig. 1 as:

p(z
(i)
k |xk,m) = αhit · phit + αshort · pshort

+ αmax · pmax + αrand · prand (7)

Figure 1: Visualization of precomputed normalized
probability table for a given measured distance, z(i)k ,
and ground truth, d.

With our probability template precomputed, retrieving
the values based on our predicted sensor measurement
and raycast ground truth values is significantly more
efficient and faster.

2



3 EVALUATION AND EXPERIMENTAL RESULTS [ERICA, EHAB]

2.4 Particle Filter [Juan, Ningshan]

The particle filter combines the motion model and sen-
sor model to calculate an estimated pose for the robot,
as well as visualize the particle cloud in RVIZ. In the
particle filter, we define several functions to allow
for localization and particle generation. The function
odom callback is responsible for transforming
odometry data to updated hypothesis of localization.
The function laser callback transforms laser data
to updated probabilities of the robot’s pose. Since both
of them update the same class variables of self.particles
of where the particles might be, threading is included
to make sure no simultaneous editing happens on the
particles. This is accomplished by adding locks and
making sure the lock is acquired whenever changes
happened on the variable and released when the pro-
cess is completed.

In more detail, we provide the robot with an ini-
tial pose in Rviz using the 2D pose estimate tool.
This pose is communicated on the initial pose
topic, but the message type contains the pose in 3
dimensions rather than the 2 dimensions needed
by the other functions. To rectify this we imple-
mented a get 2Dpose from 3Dpose function
odom callback function reads in odometry data and
uses the twist attribute of the Odometry Message
type to find the velocity and dθ of the robot, which is
then fed into the motion model to determine the poses
of the updated particles. These updated particles are
then fed into the laser callback function, which
uses the sensor model along with laser scan data to find
the probabilities associated with each of the particles.
During our tests we noticed that this approach caused
our localization to converge extremely quickly on one
pose, so in an effort to make the particles spread out,
we raised the output of the probabilities to a fractional
exponent. This operation causes the probabilities to be
more uniform, preventing the model from fixating on
one very high probability pose and resampling almost
entirely based on that. The publish array function
then generates a PoseArray and populates it with all
the particles from the most recent resampling before
publishing them to be visualized in Rviz. The function
also generates an estimate of the robot’s actual position
based on the arithmetic mean of all of the particles’ x
and y positions, along with a circular mean of all of
their yaw angles. A circular mean must be used in this
case because an arithmetic mean would not provide the
true average yaw angle for all of the particles. This es-
timated pose is then published alongside the particles
as an odometry message.

3 Evaluation and Experimental Re-
sults [Erica, Ehab]

First, we tested our MCL implementation in simulation
with the car in wall following mode. We started with
100 particles but noticed that the particles got very con-
centrated around some pose, so we took two measures
to fix this:-

• We increased the number of particles from 100 to
1000. The code was still running faster than 20 Hz
after that modification.

• We noticed only a few particles got a high proba-
bility and the rest got assigned a probability that is
orders of magnitude lower, so we took the fourth
roots of the estimated probabilities to make the
distribution less peaked.

After these modifications, we could clearly see the
particle cloud, and we achieved a very accurate result
visually:-

Figure 2: MCL result in simulation. The path from
localization is shown in green, and the particle cloud is
shown in red.

We then evaluated the accuracy in simulation by com-
paring the ground truth position of the robot to the esti-
mated pose. We graphed our x, y, and angle error over
time in Figures 3, 4, and 5, respectively.

Figure 3: X-error of robot position in simulation. Av-
erage X-Error = 0.3382 m. We hypothesize that this
X-Error includes the robot car length, which is 0.31 m.
Accounting for that offset, we’d get a very small aver-
age error of 0.0282 m.

3



4 CONCLUSIONS

Figure 4: Y-error of robot position in simulation. Aver-
age Y-Error = -0.0494 m

Figure 5: Angle-error of robot position in simulation.
Average Angle Error = 0.016 radians

For the evaluation of robot localization in real-life,
we visually inspected it based on the known map in
Stata basement. This is because in real-life, there is no
ground-truth pose that we could easily compare it to
while in motion. We placed the robot at a known po-
sition on the map, initialized its starting pose in sim-
ulation, and evaluated the accuracy of the particles
clouds. We noticed the particle cloud was updating
very slowly, so we decreased the number of particles
back to 100 to maintain a rate higher than 20 Hz.
After some parameter tuning, we managed to achieve
accurate localization on the real car:-

Figure 6: Path of robot with varying speeds and angles.
The trajectory shown was generated by this driving and
correlates visually well to the path the robot takes.

From visual inspection and correlation with a video
of the robot motion, the estimated pose was accurate
throughout various types of turns with intermittent and
varying speeds. Ultimately, when amalgamated with
our simulated errors, we were able to conclude that our
simulation and tuned real-life implementation of MCL
was sufficiently accurate.

4 Conclusions

In conclusion, we managed to get an MCL implemen-
tation to work for both a simulated and real race car
with reasonable accuracy.
We learned a few lessons as a team from this lab. For
example, we learned that transitioning from simulation
to reality presents unexpected challenges, such as lim-
itations in hardware. We couldn’t get the real racecar
to work with nearly as many particles as in simulation.
Furthermore, our racecar had a different convention
for the axes than simulation, which made our particles
move backwards when the robot was moving forwards
until we detected and fixed it.
As for the communication component, what we learned
as a group is to start the work early and communicate
our progress in the lab in a timely fashion.
Lessons learned by person:

• Ningshan: The technical aspect I learned is to
sample noise based on a normal distribution and
can adjust the distribution by raising it to a root
power. I also learned that it’s very difficult to
transfer the simulation to the stata basement be-
cause the actual basement has many objects that
interfere with the LIDAR data and localization.
For the communication component, I learned the
lesson that we should document each progress we
make by taking screenshots in a timely manner
and compile the results before the presentation so
we don’t have the replicate our progress.

• Ehab: This lab taught me that I really ought to
get better at delegating tasks. I’d started working
on the lab earlier than the rest of the team and
ended in a position where I had to be there for
every little step of the development process, and
ideally that shouldn’t have been the case.

• Juan: This lab taught me a lot about how to rep-
resent a change in the position of a robot based
on the odometry input. Forcing us to use twist in-
stead of pose caused us to have to develop unique
strategies for finding dx, dy, and dtheta that in-
volved multiplying by the timesteps between
function calls and taking the components of the
velocity from twist. I also learned about the dif-
ficulties in transitioning from simulation to a real

4

https://drive.google.com/file/d/13M48duxxxUkJKxFIRrq0tKB9kBgh_u8O/view?resourcekey


4 CONCLUSIONS

world environment, as multiple factors caused us
to have to change the code to account for real-
ity. For example, we had to flip the signs for our
odometry updates due to hardware issues with the
VESC, various objects placed around the Stata
basement caused errors in our laser scan data, and
we had to adjust the number of scans we took in
to align with those used by the ray tracing code.
For communication, I learned that it is impor-
tant to have constant documentation of any tests
done for material on reports and slides, and that
we should communicate better as a team to finish
communication assignments well before the due
date.

• Erica: Through this lab and other classes, I’ve
encountered MCL, robot frames/motion models,
discretization, Bayes filter, etc. However, it has
always remained purely theoretical to me. Hav-
ing actually applied it and seen it working step-
by-step has given me a much better intuition of
what each step actually represents. I’ve garnered a
much better intuitive understanding of what these
actually mean rather than seeing these steps (ie.
Sensor Model) as only as vague equations. In
terms of the communication side, I learned that
if I don’t understand something intuitively, asking
multiple people’s perspective may be beneficial.
One person’s picture of understanding may be
more compatible with a certain thought process.
Or by piecing together multiple snapshots of un-
derstanding, we’re able to come together to form a
clearer conceptual vision and understanding.

5


	Introduction
	Technical Approach
	Bayesian Filter and Monte Carlo Approach [Ehab]
	Motion Model [Ehab]
	Sensor Model [Erica]
	Particle Filter [Juan, Ningshan]

	Evaluation and Experimental Results [Erica, Ehab]
	Conclusions

