
Path Planning and Following in Mobile Robot

Juan Alvarez, Joel Santiago-Baretti, Erica Chen, Mohammed Ehab, Ningshan Ma
RSS: Robotics, Science, and Systems

Team 2

April 26th 2024

Path planning is a fundamental aspect of robotics which involves a robot de-
termining a sequence of actions for an autonomous agent to navigate from an
initial state to a goal state while avoiding obstacles and adhering to specific
constraints. In this report, we explore a solution to this problem through exiting
path planning methodologies. At a high level, our approach uses search based
algorithm as A* to compute optimal paths from start pose to end pose and uses
pure pursuit to command the robot to drive. Additionally, we investigate how
various factors, including graph representation influence the robot’s path plan-
ning process. Keywords: Path-planning, A* Search, Motion-planning

1 Introduction

Path planning is an essential element of autonomous
navigation which entails an autonomous agent navigat-
ing from an initial state to a designated goal state while
avoiding obstacles and following a developed path.
This task is crucial for the implementation of a more
precise controller and a successful self-driving robot.

Some problems that may arise from the implementa-
tion of a path planning algorithm are the development
of non-optimized paths, improper integration with the
driving controller, and unintended collisions. We dis-
cuss solutions to these problems in order to achieve our
overarching goal of giving the autonomous robot an
initial pose and a final destination, and then properly
arriving at the desired destination. In order to construct
an optimal path from the start pose to the end pose,
an A* search algorithm was developed. The A* algo-
rithm takes input from our graph-based representation
and then creates an optimized path which avoids obsta-
cles. The implementation of the A* algorithm with a
Pure Pursuit controller and the necessary adjustments
made to create a smooth and complete path are dis-
cussed. Elaborating further, the creation of a feasible
graph representing our environment, the efficiency of
the Pure Pursuit control, and the use of the A* search-
based algorithm are modeled and explained.

2 Technical Approach

2.1 Path Planning Selection

2.2 Map Representation

To construct a feasible graph representing our environ-
ment for A* search, we begin by mapping the environ-
ment onto a grid-based representation. The information
about the grid is provided in an occupancy grid, where
obstacles are marked within the pixel coordinates. We
iterate over neighboring pixels around a given node us-
ing nested loops to establish connections in the graph.
For each neighboring pixel, if it falls within the map
boundaries and is not obstructed by an obstacle, we add
a path between them and add the neighboring pixel to
the list of neighbors for the current pixel. To reduce the
risk of collision and leave a safety margin around ob-
stacles, we expand the boundaries of obstacles through
dilation, effectively creating a buffer zone that helps
avoid close corners. For our dilation choices, we ex-
perimented with different radius and chose the largest
radius that doesn’t close off any narrow path which is
10 pixels. Fig. 1 shows an example of a long path with
dilation enabled to allow the car to navigate around
walls and other obstacles without crashing, while Fig.
2 shows a path that is not viable because dilation was
not performed.
We also experimented with changing our map space’s
granularity when creating the neighboring pixels, thus
subdividing the pixel space from the resolution. As
shown in Fig. 1, subdividing the pixels did give the

1

2 TECHNICAL APPROACH

Figure 1: Path with dilation performed on map

Figure 2: Path with no dilation performed on map

ability for the path to create shallower angles between
neighboring map units. However, in testing we decided
against implementing this due to steep costs for a shal-
low return.

Figure 3: Comparison of ideal straight line path with
pixel subdivision vs without pixel subdivision

2.3 Pure Pursuit

Once a path is planned, we need to implement an algo-
rithm for the robot to follow it, and for that we chose
pure pursuit control.
The idea behind pure pursuit is the following: draw a
circle centered at the robot of radius L1, and compute
the last point P where the circle intersects the path;
then, steer the robot as if it’s heading directly towards

that point. Since we are looking ahead in the path by a
distance L1, we will refer to L1 as the lookahead dis-
tance.
The steering angle δ depends on the angle between the
robot and the lookahead point, η, as well as the length
of the robot L. We derived the following formula for η
in Lecture 6:-

η = tan−1(
2L sin η

L1
)

Figure 4: Illustration of pure pursuit control, from Lec-
ture 6 slides.

In order to implement pure pursuit control for this
lab, we need a way to compute the reference point
P . The path is given as a piecewise-linear path with
way-points P0, P1, . . ., Pn. The path then consists
of the line segments (P0, P1), . . ., (Pn−1, Pn). In or-
der to compute P , we iterate over the segments one
by one until we find a segment that intersects the cir-
cle of radius L1 around the robot. We then compute
the intersection point by solving a pair of simultane-
ous equations. Both of these operations can be done as
follows: suppose the current segment we’re checking is
(Pi, Pi+1). Let d = Pi+1−Pi. We can parameterize the
line through these points as Pi + t · d, and in particular,
the line segment is the set of points where 0 ≤ t ≤ 1. If
the robot location is Pr, we can then solve the equation
||Pi + t · d − Pr||2 = L2

1 to get the intersection be-
tween the circle of radius L1 around the robot and the
line through Pi and Pi+1. This is a quadratic equation
in t, so we can solve it using the quadratic formula. If
there’s no solution, or if 0 ≤ t ≤ 1 doesn’t hold, the
segment doesn’t intersect the circle. Otherwise, if t∗

is the solution, then P = Pi + t∗ · d. It could be the
case that the quadratic equation has two solutions. To
ensure that we obtain the latest point of intersection on
the path, we pick t∗ to be the larger between the two
solutions.
Since this module was developed in parallel with the
path planning module, the order of magnitude of how
many line segments the path would contain was un-
clear, and we needed to ensure the most efficient im-
plementation possible. Iterating over the segments one
by one every iteration is inefficient and unnecessary

2

3 EVALUATION AND EXPERIMENTAL RESULTS

for the following reason: suppose that last iteration, the
circle intersected the path at the fifth segment. Then,
since the robot only moves forward, we do not need to
check intersection with the first four segments again,
since the robot already passed them. We can thus store
a variable telling us which segment the robot is cur-
rently tracking and only increase that variable in time.
This leads to a more efficient algorithm with amortized
constant time complexity.

2.4 Path Planning

To implement path planning on our robot, we had to
choose an appropriate path planning algorithm to use.
We were given a choice of Search-based or Sample-
based planning algorithms. Both options have various
advantages and disadvantages. For example, sample-
based algorithms generally run faster than search-based
algorithms. In addition, some, such as RRT, are proba-
bilistically complete, meaning that given enough time
they will find a viable path if one exists. However,
these algorithms are not optimal. They may always
find a path, but there is no guarantee that it is the ideal
path, and because of the probabilistic nature of every
step of the algorithm, the path may be very jagged and
include unnecessary random movements. There are
ways around this, such as smoothing the paths, but we
instead decided to use a search-based algorithm, A*.
Search-based algorithms run slower on average than
sample-based algorithms, but A* is both optimal and
complete. This means that if a path exists, A* will al-
ways find it, and when it does, it will be the optimal
path for whatever heuristic we use. We decided to use
A* with a Euclidean distance heuristic. We also con-
sidered using Dubin’s curves as a heuristic but after
testing Euclidean distance we determined that the path
generated by it was sufficient to be followed by the car
without having to take into account more information
about the car’s dynamics.
To implement A*, we fed our map in as a graph where
each pixel represented a node with some adjacent
neighbors on which we could perform A*. As dis-
cussed in the Map Representation section, we also
experimented with subdividing each pixel into mul-
tiple nodes to achieve higher granularity on the map
and paths that were closer to optimal for certain situ-
ations. However, due to runtime issues and marginal
gains in path optimality we decided against subdivid-
ing the pixels. We also defined a few helper functions
to aid in our A* implementation, such as a heuristic
function that calculated the Euclidean distance between
two points, and functions that converted from pixel
coordinates to map coordinates and vice versa. These
were important because the A* algorithm took in start
and end points as pixel coordinates, but had to output
the path in xy map coordinates for it to be visualized

correctly in the map.

3 Evaluation and Experimental Re-
sults

To evaluate our path following algorithm, we compared
the given teacher assistant’s path with our generated
path. While their solution may not be the most ideal
path, we determined that it was optimal enough to pro-
vide an adequate baseline. We utilized our A* imple-
mentation without pixel subdivision in our map space
to generate Fig. 5.

Figure 5: Graph of planned path without subdivided
nodes. The average error was 0.42m while the average
runtime was 2.3 seconds.

As shown, the path has a tendency to follow the grid in
the map space. This is most evident from where x ≈
6 to x ≈ 20. Our attempt at remedying this was to
subdivide our pixels. In Fig. 6, we used the same path
but subdivided each pixel into two.

Figure 6: Graph of planned path subdividing each node
into two. The average error was 0.35m while the aver-
age runtime was 24.4 seconds.

While the path still has a tendency to follow the grid
space, the angle at which it takes to transition between
the space is significantly shallower. However, when
we compared the average errors between them, we

3

4 CONCLUSIONS

realized that this improvement was marginal, but the
runtime increased by about a factor of ten. Further di-
viding our map space would likely exponentially in-
crease our computation time while barely optimizing
the path. Ultimately, we decided to revert back to our
map representation without the subdivided pixels, as
the average error was adequate and our algorithm did
a sufficient job of avoiding walls in our real-life imple-
mentation. Given more time, we would likely be able
to post-process our data to be able to fit a line during
those long, angled straight paths.
Despite our path being sufficiently efficient, in our real-
life implementation, there is a bit of oscillation on the
real car that we do not observe in simulation. In an
attempt to debug this, we hypothesized that the path
following module might be running too slowly, since
there were more than 300 line segments in the path.
One reason we have that many line segments is an ar-
tifact of how the graph was built: only adjacent pixels
are connected. Hence, a long straight line segment can
end up being represented as a concatenation of hun-
dreds of short ones.
To mitigate this issue, we decided to remove redun-
dancies in the path by removing the waypoint Pi if it is
collinear with Pi−1 and Pi+1. After that modification,
the number of line segments in the same path dropped
to only 24. We then used the ros2 topic hz command
to ensure the driving commands are being published in
real-time, and they were indeed being published at 60
Hz. The lookahead point P was also being published at
that rate and accurately tracked the path.
The oscillations marginally improved due to this mod-
ification, but they were still prevalent. Based on the
evidence that every component of the system works
perfectly in real-time, and that the oscillations do not
arise as an issue in simulation, we concluded that the
oscillations are more likely to be an artifact of our im-
perfect localization system rather than path following
system.

4 Conclusions

Based on the smooth path following we obtained in
simulation and the results we observed in practice, we
conclude that our robot indeed accomplishes path plan-
ning and following, and that the oscillations observed
can be smoothed out by revising and improving our lo-
calization. Another next step would be further process-
ing our data to be able to create more efficient, angled
lines.
Lessons learned by person:

• Ningshan: I learned to collaborate with another
teammate on a specific module and sharing the
responsibility for it. Juan and I collaborated on
the path finding module and it turned out really

well because we were able to debug together and
discuss the steps.

• Ehab: I learned how to trust my teammates better
and not worry about every detail. I tried to inter-
fere as little as possible with the path planning
module, and they just did a great job.

• Juan:

• Erica: From last lab, we put off collecting all the
data until after we completed everything. But I
learned that doing this incrementally is a much
better alternative since it’s hard to ”revert” back to
old code to collect data for comparison.

• Joel: I learned how collaborate with my team-
mates in order to gain a better understanding of
the technical problems we faced. I developed my
skills with RViz in order to simulate Ehab’s pure
pursuit on a sample trajectory.

4

	Introduction
	Technical Approach
	Path Planning Selection
	Map Representation
	Pure Pursuit
	Path Planning

	Evaluation and Experimental Results
	Conclusions

