RSS Final Challenge

Juan Alvarez, Joel Santiago-Baretti, Erica Chen, Mohammed Ehab, Ningshan Ma
RSS: Robotics, Science, and Systems
Team 2

May 13th 2024

In this paper, we present our solution for the two distinct parts of the final chal-
lenge of RSS (Robotics Science and Systems) 2024. For Part A, the race car
leverages color segmentation and Hough transform techniques to detect and
follow white lane marks around the Johnson track, minimizing speed time and
number of collisions. Specifically, the car’s system isolates the white lines on
the track using color segmentation, then applies the Hough transform to in-
terpret these lines for real-time pure pursuit. For second part of the challenge
of the challenge, the vehicle transitions to a more intricate environment: nav-
igating through the basement of the Stata building. The race car employs the
A* path finding algorithm and localization algorithm implemented earlier in
classwork to effectively localize itself and maneuver through the predefined

environment.

1 Final Race

1.1 Challenge [Ningshan]

In the first part of the challenge, Final Race, we are
tasked with traveling around the Johnson track while
staying within a specific lane under swiftly. The goal
is to minimize speed and number of trespasses of the
designated lane. We need to develop control systems
that can detect and adjust to the turns of the lane and
make sure that the vehicle remains on its intended path
without sacrificing speed. The challenges lie in man-
aging the high-speed dynamics of the robot while si-
multaneously updating driving commands based on
real-time camera feedback. We wanted to travel at the
upper limit of 4 m/s, which gives high constraint to our
algorithm since the system must process and react to
visual data almost instantaneously to maintain course
accuracy.

1.2 High Level Approaches [Ehab]

At a high level, we needed to implement two subsys-
tems for this challenge: a lane detection system and

a controller for steering the robot. For steering, we
quickly decided on a pure pursuit controller. We had
implemented pure pursuit control in previous labs and
demonstrated smooth and successful driving with it in
our wall following module, so it was a clear choice.

As a black-box algorithm, a pure pursuit controller
requires as input a lookahead point P that the robot
keeps driving towards, so our lane detection algorithm
has to output such a point P. That point corresponds to
the point a distance L (the lookahead distance) from
the robot that lies on the robot’s desired path. The
robot constantly drives towards that lookahead point P
and updates it throughout its run, and hence for smooth
driving, P has to be as close to the center of the lane as
possible and change continuously with minimal noise.
For details on pure pursuit, please refer to our report on
path planning and following.

To obtain P, we developed two competing approaches
in parallel that we will describe next.

1.2.1 Sliver Approach

In this approach, we slice a thin sliver of the image the
robot sees that corresponds to the image at a distance
of L. That slice should contain two white regions that
correspond to the edges of the lane. We employ color
segmentation to obtain a black-and-white image where
white corresponds to the lane lines. We can then appro-
priately take the average of the locations of the white
pixels to obtain our lookahead point P.



1 FINAL RACE

1.2.2 Hough Line Detection Approach

In this approach, an algorithm called Hough transfor-
mation is employed to detect lines in the image. The
lines are then transformed from pixel space into their
locations in the real world using a homography trans-
form. These transformed lines give us a mathemati-
cal equations for, approximately, where the lanes are.
A lookahead point P is then easier to compute using
these concrete equations.

We decided on the latter approach for the following
reasons: first, the computed lookahead point P is less
noisy in the latter approach because instead of one
sliver of the line, the latter approach uses the entire
line. This is akin to fitting a line to many data points as
opposed to relying on a few nearby measurements in
data science: the line fitting approach is better at elim-
inating noise. Second, for a large lookahead distance
L, the robot can no longer see the lanes clearly, and
the former approach may no longer work. The latter
approach, however, works for larger lookahead dis-
tances. This is critical for driving at high speeds where
the robot needs to look far ahead before deciding on an
action.

1.3 Lane Detection Details
1.3.1 Color Segmentation [Ningshan]

As a first step, we obtain a black and white image
where white corresponds to the lanes and black cor-
responds to everything else. To perform that, we im-
plemented color segmentation which involves setting
upper and lower bounds for color values to identify
relevant objects within the visual input. Determining
these aforementioned values have proven difficulty
and necessary of extensive fine-tuning. From previous
labs, the process required manually adjusting the val-
ues in our program code, observing the effects on the
bounding boxes, stopping the program, and repeating
the process, which was a highly time-consuming cycle.
To address this inefficiency, we developed a real-time
system utilizing OpenCV sliders. This system displays
the thresolded image of the HSV values as white pix-
els, and others as black, allowing us to see the impact
of changes instantaneously as we adjust the slider val-
ues. Moreover, we integrated interactive sliders from
OpenCYV to adjust the color thresholds in real time

and it significantly streamlined the fine-tuning pro-
cess. This enhancement has not only accelerated our
workflow but also improved the precision with which
we can select color ranges for segmentation. We tested
our slider and visualization algorithm using the orange
cone provided to ensure accuracy.

Figure 1: Sliders and fine-tuning process

Figure 2: Result of fine-tuning

1.3.2 Hough Transform [Ehab]

After color segmentation, the Hough transform algo-
rithm is employed to detect the lines in the image, giv-
ing us mathematical equations to describe the lanes.
An example of the output of that transform is shown in

Figure

Figure 3: The lanes and background noise are shown in
white, and the lines detected by the Hough transform
are shown in red.

The red lines are in image space, but in order to ob-
tain information about the lanes, we need to compute
where they are in the real world. For that, a homogra-
phy transform is employed. A homography transform
is an algorithm that takes a pixel in image space and
computes, approximately, its location on the ground
plane. Since a line is defined by two points, taking two
pixels on the line and passing them through a homog-
raphy transform gives us two points on the ground that
define the lane.



2 CITY DRIVING

Next, we need a way to compute the lookahead point
P given the lines. This is complicated by the fact that
the lines do not correspond cleanly to lanes and can
include background noise, or as seen in Figure[3] a
single lane can be seen as multiple separate lines by
the Hough transform. To mitigate the latter issue, we
decided to cluster the lines such that each group of sim-
ilar lines is represented by only one line, with the goal
of picking the two most vertical lines (after the homog-
raphy transform) to be the lanes.

Throughout experimenting with that, we discovered
the algorithm does not always detect both lanes. For
example, only the right lane is detected in Figure [4]

Figure 4: Only the right lane is detected even though
the left lane is present in the image.

With that in mind, we needed to design an algorithm
that is robust against that issue. We decided to pick
the most vertical line to the robot’s left as the left lane.
If no such line is found, the most vertical line to the
right is picked as the right lane. After that, the lane is
shifted by 0.45 m (half the width of the track) to give
us an equation for the line through the center of the
track. The lookahead point P is then computed as the
intersection of a circle of radius L around the robot
with that line.

Figure 5: The left lane is highlighted in green.

Note the following important detail in our algorithm:
the left lane is picked consistently when possible in-
stead of letting the algorithm choose between the left
and right lane. The effect is that the lookahead point
varies more smoothly than if a different lane is picked
arbitrarily every time.

1.4 Experimental Evaluation [Erica]

After we had our approach for using line detection and
extrapolation, we needed to tune our parameters to be
adequate at speeds of up to 4 m/s. The primary param-
eters that we changed was the maximum steering angle
that the car was allowed to take and the lookahead dis-
tance.

Due to our hardware, our car’s axis neutral axis was
angled left. Therefore, we decided to account for this
by differing the maximum steering angle that the car
was allowed to take to the left and the right. At speeds
of 2 m/s, we were able to have a lookahead of 1.5m
and steering angles of [gr—o, 0], where the first number is
maximium angle to the right, and the left is maximum
angle to the left. With this implementation, we were
able to successfully circle around the track with zero
infractions in 121 seconds. However, since we wanted
to prioritize speeds, we tuned our parameters at 4 m/s
until we had a lookahead distance of 4.2m and angle
limitations of [ﬁ, 47.%0]. With this set of parameters,
for our best attempt in practice, we were able to travel
the track at 47 seconds with one long breach into an-
other lane. We deemed this adequate for our purposes,
and proceeded with these parameters. In our best of-
ficial run, we traveled the track in 49 seconds with 3
infractions. We believe that our HSV values were too
narrow, and the curtains were moved, therefore casting
shadows and lights that we had not accounted for in
practice.

2 City Driving

2.1 Challenge [Juan]

For this challenge, we were required to navigate to 3
TA selected locations and stop for 5 seconds at each
one in order to collect shells from the TAs. Along the
way, we encountered obstacles such as traffic lights and
stop signs, which we had to detect and obey using vari-
ous computer vision strategies such as color segmenta-
tion and machine learning. To navigate to the required
locations, we decided to use path planning together
with localization and pure pursuit. The challenges with
this part of the competition were maintaining

2.2 Path Planning [Erica]

For our path planning, we decided to use the imple-
mentation that we had created previously. We take in
our occupancy grid that represents the map space and
feed it into an A* algorithm with a Euclidean distance
heuristic. To adapt our code to follow the rules of the
traffic and stay on the right side of the road, we took
the trajectory of the middle lane and added it as an ob-
stacle in the map representation. This meant that when



3 LESSONS LEARNED BY PERSON

A* searched through the map, it would avoid crossing
the lane, similar to a wall. Additionally, to adapt our
code to stop at the three shells, we plan each path se-
quentially and stop planning once we reach a radius

of 1m from the shell. This 1m buffer in the goal point
allows our paths to be smoother and more flexible.
Since we decided to make the entire middle lane an ob-
stacle, our paths would require us to travel significantly
further and fully go around the Stata basement before
we could make a U-turn and travel back in the right
lane. Our solution to this was to see the location of the

farthest shell from the start point, then “cut off” the line

barrier so the car could make a U-turn onto the other
side of the lane. However, due to time constraints we
had to manually cut the lane in our code. While it was
successful in getting a significantly shorter path, given
more time, we would have implemented this more dy-
namically.

2.3 Traffic Light and Stop Sign Detection [Er-
ica]

We implemented a similar approach for our traffic light
detection using our line detection method for Johnson
track. We were able to use our HSV sliders to accu-
rately tune the camera and only recognizes the red light
when it is on and not off. However, regardless of tun-
ing, there were objects in the background, such as a
bright red board that we were unable to isolate using
just color segmentation. So to make our system more
robust, we similarly implemented hough circles to de-
tect round objects. This successfully isolated only the
red on light while filtering out the background noise.
For our stop sign detection, we integrated the TA cre-
ated code which would use machine learning to recog-
nize when a stop sign was in the area. However, due to
significant runtimes and delays, we elected to prioritize
other functions over this.

2.4 Integration and Evaluation [Ehab]

We tested our path planning through the shell locations
marked in red in Figure[§] We found a path that makes
a loop around the center of Stata then a U turn to return
to the start.

With the knowledge of the locations of the shells on
race day, it was clear there is a shorter path that makes
a U turn after the second shell. We shortened the lane
to end right after the second shell, allowing the robot
to discover that U turn. After that optimization, we
managed to obtain a shorter path shown in Figure [7]
The main challenge with that path was completing the
U turn. The corridor was too narrow for the robot to
complete it by steering and moving forward. To amend
this issue, a command was added where if the robot is
close to hitting a wall, it has to back up. This not only

L e —

Figure 6: Initial trial of path planning

enabled the robot to complete the U turn, but it helped
the robot recover from bad positions where it is driving
too close to the wall.

With that implemented, we managed to make a run
around the State basement where the robot stopped
within 1 meter of each of the three shells and returned
to the start. The run took 2 minutes and 40 seconds to
complete at a speed of 0.75 m/s.

Figure 7: More optimal path planned with a U turn in
the middle.

3 Lessons learned by person

* Ehab: I learned that sometimes small practical
hacks is all it takes. I was trying hard to get more
accurate lane detection or steering control, but
limiting the steering angle was just enough and
makes a lot of sense given the context.

* Ningshan Ma: I learned it was important to collect
data in advance such as videos recorded at the
Johnson video or with the traffic light so we don’t
have to test things at the very last minute on site. I
also learned that not putting all the efforts I could
put in could leave regrets. The night before the
race day, due to worry for health issues I didn’t
pull an all-nighter that some of my teammates did
and I felt an extensive amount of regret afterwards
because I feel like I should have prioritized my
team our performance at the raceday.


https://drive.google.com/file/d/14taa-RYBIMVmlRmCGUhqDG1zQ9L7KC2T/view?usp=sharing

3 LESSONS LEARNED BY PERSON

* Joel Santiago-Baretti: I was able to learn about
broad topics in controls, localization, and how
they are integrated into a single system. I was
taken very out of my comfort zone since I am not
a programmer, however I enjoyed learning about
how localization algorithms work and seeing them
be integrated into our final challenge.

* Erica: In this final amalgamation of our labs, I
realized that there are multiple ways to approach
the same problem. What intuitively seems like the
easiest solution may not be the most practical, and
it is worthwhile spending time in the beginning to
debate the pros and cons. ie. The sliver method
seemed simpler due to it’s similarity to previous
labs, but it was far inferior to our hough method
due to the speed and lookahead specifications in
the Johnson track scenario.



	Final Race
	Challenge [Ningshan]
	High Level Approaches [Ehab]
	Sliver Approach
	Hough Line Detection Approach

	Lane Detection Details
	Color Segmentation [Ningshan]
	Hough Transform [Ehab]

	Experimental Evaluation [Erica]

	City Driving
	Challenge [Juan]
	Path Planning [Erica]
	Traffic Light and Stop Sign Detection [Erica]
	Integration and Evaluation [Ehab]

	Lessons learned by person

